Problem set 2

November 17, 2015

Problem 1. Let $\varphi \colon \mathbb{R} \to \mathbb{R}_{>0}$ be the map give by $\varphi(x) = 2^x$. Prove that φ is a homomorphism of groups $(\mathbb{R} \text{ with } +, \text{ and } \mathbb{R}_{>0} \text{ with } \times)$.

A homomorphism is called an **isomorphism** if it is a bijection. Two groups G, H are called **isomorphic** if there is an isomorphism (maybe not unique) $\varphi \colon G \to H$.

Problem 2. A homomorphism $\varphi \colon G \to H$ of groups is an isomorphism if and only if there is a

homomorphism $\psi \colon H \to G$ such that $\varphi \circ \psi = id_H$ and $\psi \circ \varphi = id_G$, i.e. ψ is inverse of φ .

Problem 3. Prove that $\varphi \colon \mathbb{R} \to \mathbb{R}_{>0}$ defined in the first problem is an isomorphism.

Problem 4. Are groups \mathbb{R} with + and $\mathbb{R}^{\times} = \{x \in \mathbb{R} \mid x \neq 0\}$ with \times isomorphic?

Problem 5. Let G, H be two groups. Define $G \times H$ to be the set of all pairs (g, h) with $g \in G, h \in H$.

Define an operation * on it by

$$(g,h)*(g',h') := (gg',hh')$$

Prove that $(G \times H, *)$ is again a group. It's called the **product of groups** G, H. **Problem 6.** Are the following pairs of groups isomorphic?

- $\mathbb{Z}/2 \times \mathbb{Z}/2$ and $\mathbb{Z}/4$;
- S_3 and $\mathbb{Z}/6$;
- $\mathbb{Z}/6$ and $\mathbb{Z}/2 \times \mathbb{Z}/3$;
- $\mathbb{Z}/2 \times \mathbb{R}_{>0}$ and \mathbb{R}^{\times} .